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Abstract Combat system effectiveness simulation
(CoSES) plays an irreplaceable role in the effectiveness
measurement of combat systems. According to decades
of research and practice, composable modeling and multi-
domain modeling are recognized as two major modeling
requirements in CoSES. Current effectiveness simulation
researches attempt to cope with the structural and behav-
ioral complexity of CoSES based on a unified technological
space, and they are limited to their existing modeling par-
adigms and fail to meet these two requirements. In this
work, we propose a model framework-based domain-specific
composable modeling method to solve this problem. This
method builds a common model framework using applica-
tion invariant knowledge for CoSES, and designs domain-
specific modeling infrastructures for subdomains as cor-
responding extension points of the framework to support
the modeling of application variant knowledge. Therefore,
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this method supports domain-specific modeling in multi-
ple subdomains and the composition of subsystem models
across different subdomains based on the model framework.
The case study shows that this method raises the modeling
abstraction level, supports generative modeling, and pro-
motes model reuse and composability.

Keywords Modeling and simulation - Composable
modeling - Domain-specific modeling - Simulation model
framework - System effectiveness simulation

1 Introduction

System effectiveness is the measurement of the system capa-
bility to fulfill specified tasks under certain conditions, and it
is a critical indicator for the quality of system product from
the aspect of system utilization. In particular in the military,
combat system effectiveness has become one of the most
important guidelines for the demonstration and overall design
of various equipments (e.g., missiles, warships). Combat
system effectiveness evaluation involves combat system-of-
systems (SoS) and personnel from two or more combat
sides, and contains complex counterwork process. Since tra-
ditional analytical methods and physical experimentation are
limited to deal with such complexity, simulation-based sys-
tem effectiveness evaluation is proposed recently [1]. Based
on measures of performance (MoP), combat system effec-
tiveness simulation (CoSES) evaluates the combat system
effectiveness in the counterwork process to fulfill certain
tasks via simulation. Typical CoSES needs to fulfill the fol-
lowing functions: (1) modeling physical combat systems,
combat decision rules and the combat environment; (2)
exhibiting the dynamic counterwork process; and (3) eval-
uating the influence of MoP (or tactics) variations of certain
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weapon equipments on the overall effectiveness of combat
systems.

Combat system modeling and simulation (M&S) is
researched at a series of abstraction levels from top to
down: the theater/campaign level, the mission/battle level,
the engagement level, and the engineering level [2]. System
effectiveness is explicitly studied at the engagement level
to evaluate system attribute or tactics alternatives under the
background of SoS counterwork. So it is higher than the
engineering level which concentrates on the evaluation of
performance parameters of combat systems, and lower than
the mission level which aims to study the influence of scale
and structure variation of combat SoS on its capability. At the
engagement level, combat systems are modeled conforming
to principles of functional modeling [3] to achieve concise-
ness and efficiency. For example, a radar system is modeled
using power, bandwidth, and signal-to-noise ratio to calcu-
late the probability of discovery, identification, tracking, and
interference in a typical sensor functional process, while at
the engineering level it is modeled from the aspect of signal
generation, transmission, reflection, attenuation, and recep-
tion.

Models lie in the heart of the simulation, and modeling is
a critical issue in M&S activity. In this work, we concentrate
on modeling issues and identify two prominent modeling
requirements in CoSES: composable modeling and multi-
domain modeling.

(1) Composable modeling

Combat systems usually need to fulfill multiple combat
tasks. Thus combat system effectiveness evaluation should be
conducted based on the comprehensive result on performing
multiple heterogeneous tasks. For example, a nuclear sub-
marine should possess the capability of anti-ship, anti-shore,
anti-air, and strategic strike, so the effectiveness evaluation
of a nuclear submarine needs to construct multiple cor-
responding simulation applications for each capability. A
simulation application is a specific configuration of the sim-
ulation system to solve a given application problem, and it
includes a specific set of simulation scenarios, simulation
model instances and design of experiment files. These simu-
lation applications can be developed independently; however,
many models can be reused in different scenarios of these
applications, such as the submarine model, the sonar model,
and the torpedo model. So how to incorporate and reuse
existing models for submarine effectiveness simulation is
of vital importance to increase the productivity and effi-
ciency in the development of simulation applications. More
generally, we need to support composable modeling for the
multi-application effectiveness simulation of other kinds of
equipment (e.g., warships, fighter planes, and tanks).

Model frameworks are used in many M&S practices to
support composable modeling. A model framework (also
called model architecture) is a specification of the types of
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the simulation models and their interaction relationships in
a typical subject domain. The model framework can sup-
port composable modeling from the following two aspects:
Firstly, in the model design phase, it architects the basic entity
types and relationship patterns of all simulation models and
lays the foundation for detailed submodel design; secondly,
it integrates all the simulation models in the model integra-
tion phase and assemble them into a simulation application.
The model framework specifies the basic structural aspect
of the overall simulation model architecture, and this struc-
tural specification remains invariant for multiple simulation
applications.

(2) Multi-domain modeling

Effectiveness simulation models involves many sub-
ject domains, which include detection domain (e.g., radar,
infrared, magnetic, acoustic detection), firepower domain
(e.g., missiles, bombs, torpedoes, mines), platform domain
(e.g., ships, aircrafts, vehicles, satellites), communication
domain (e.g., voice, digital communication), cognitive
domain (e.g., command and control, planning), and environ-
mental domain (e.g., atmosphere, geography, marine, space).
On the one hand, models from different domains differ evi-
dently in behavioral semantics and should be described using
appropriate formalisms accordingly. For example, models
in the firepower domain usually can be described as multi-
phase continuous systems; models in detection domain can be
depicted as reactive discrete time systems; combat platforms
can be modeled as cognition-driven continuous system; and
cognitive domain can be characterized by various paradigms
such as rules, events, activity and process. Effectiveness
simulation needs to support multi-formalism modeling to
combine these models of heterogeneous semantics. On the
other hand, users and modelers from various domains are
involved in effectiveness simulation to ensure simulation
credibility and extensibility. It is unfeasible to adopt a general
modeling method in the face of various domains, and thus
domain-specific modeling methods and environments tai-
lored for domain-specific characteristics should be provided.
Then domain users and modelers can use these domain-
specific infrastructures to create, modify, and extend models
conveniently.

The key to address the multi-domain modeling problem is
to construct domain-specific modeling infrastructure based
on domain knowledge. According to the knowledge engi-
neering in M&S, domain knowledge in CoSES can be divided
into application invariant knowledge (AIK) and application
variable knowledge (AVK). AIK refers to domain knowl-
edge common to the domain and not specific to a particular
simulation application, whereas AVK is the part of domain
knowledge specific to one or several applications but not
qualified to the domain level.

As will be discussed in detail in the following section, cur-
rent effectiveness simulation research attempts to cope with
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Fig. 1 A model development and execution lifecycle and its infrastructure support for CoSES

the composable modeling and multi-domain characteristics
of effectiveness simulation systems solely based on a unified
technological space. These methods are limited, and they fail
to meet both of the two modeling requirements sufficiently.

According to our understanding and experience on CoSES
research, a model framework for CoSES plays a central role
in meeting these two modeling requirements. On the one
hand, to meet the composable modeling requirement, a com-
mon model framework for various CoSES applications is
built based on the AIK extracted from all CoSES subdo-
mains and a domain-specific modeling language (DSML)
for each subdomain is constructed using the relevant AIK.
On the other hand, to meet the multi-domain modeling
requirement, the model framework provides corresponding
extension points or mechanisms which are used to inte-
grate AVK for different specific simulation applications, and
domain modelers use DSML to construct domain-specific
model based on the AVK.

We had proposed a domain-specific modeling (DSM)-
based multi-paradigm modeling methodology for complex
systems [4]. This methodology can be used as a guideline for
effectiveness simulation model development since CoSES
is also one kind of complex simulation systems. Moreover,
we had built DSM infrastructure for decision modeling in
combat systems [5,6]. Based on the aforementioned efforts,
we propose a domain-specific composable modeling method
which supports the description of domain-specific structure
and behavioral patterns using a unified model framework.

The rest of the paper is organized as follows. Section 2
discusses four kinds of existing typical M&S methods for
effectiveness simulation. Section 3 presents the proposed
approach and its technical implementation after a brief intro-
duction to DSM and the model framework for effectiveness
simulation. Based on the model framework, Sect. 4 investi-
gates domain-specific composable modeling in three typical
subject domains. Section 5 illustrates the application of the
method with a case study, and Sect. 6 concludes this research
and proposes future work.

2 Related work on M&S for CoSES

Effectiveness simulation has been widely used in require-
ment analysis, overall design, development and training of
combat systems. A diversity of methods, standards, and plat-
forms have been proposed and developed for these purposes.
According to the modeling and simulation lifecycle [7],
model development and execution can be divided into four
phases (as shown in Fig. 1): model design, model imple-
mentation, model integration and model execution. Based
on the technical characteristics of each phase, current M&S
research on combat system effectiveness measurement can
be categorized as the following four kinds: formalism-based
model design, simulation model specification-based imple-
mentation, model framework-based model integration, and
simulation protocol-based model execution. Actually each
method includes all four phases. However, these researches
are usually based on one unified technological space which
mainly aims to cope with a certain phase of the whole process.

2.1 Unified formalism-based method

Formalisms in M&S are usually defined to consist of two
parts: model specification and execution algorithm [8].
Model specification is a mathematical theory describing the
kinds of structure and behavior that are in accordance with
it, and execution algorithm specifies an algorithm that can
correctly execute any model that is described in accordance
with the model specification [8]. A modeling formalism is
usually an abstraction of certain structural and behavioral
characteristics of systems and can be used to describe diverse
systems which possess the same characteristics across dif-
ferent application domains. Domain modelers can develop
modeling environment and simulation engine based on cer-
tain formalism to meet specific domain requirements.

The unified formalism-based method aims to solve com-
posable modeling from the aspect of model design. This
method is usually based on a unified formalism which
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can describe various behavioral patterns, and employs the
extension capability of that formalism to integrate other
formalisms. Typical unified formalisms are discrete event
system specification (DEVS) [9] and Modelica [10]. DEVS
can describe discrete event behavior, discrete time behavior
and continuous time behavior. Modelica can describe con-
tinuous time behavior, event and state behavior of discrete
systems in a causal or non-causal way. DEVS is the founda-
tion of M&S theory and has been widely accepted by M&S
community. DEVS is proven to support both theoretical and
practical research of combat system effectiveness simula-
tion, typical examples are JointMEASURE [11] developed
by Lockheed Martin and simulation-based defense system
analysis performed by the research team led by Professor
Kim in South Korea [12]. Modelica is constructed and stan-
dardized by the joint efforts of the academia and industry,
and it has become the unified M&S formalism for engineer-
ing physical systems.

This method supports model composition based on the
unified formalism at the semantics level. However, no for-
malism is able to describe all behavior patterns appropriately
and to incorporate that the AIK is not the design goal of for-
malisms.

2.2 Unified model specification-based method

This method provides a unified model specification for the
description and implementation of multi-domain simula-
tion models to enable composable modeling. Models from
different domains should conform to a canonical model
specification, such as Base Object Model (BOM) [13] and
Simulation Model Portability standards 2 (SMP2) [14].

BOM is proposed to raise the abstraction level of high-
level architecture (HLA) [15]-based model specification and
becomes the actual model specification for HLA-based simu-
lation system development. It introduces modeling concepts,
such as entity and event, and describes the object behaviors
via state machine. However, it has several disadvantages as a
model specification: It lacks support for hierarchical model
composition; its description of state machine-based behav-
ior is conceptual, not formal; and it is closely coupled to and
technically affiliated to HLA, and thus it encounters the same
problem as HLA (as discussed in Sect. 2.4).

SMP2 is proposed by Europe Space Agency to promote
model portability, reuse, and interoperability, which com-
plies to model-driven architecture (MDA) principles by the
usage of platform-independent model and platform-specific
model in the simulation model development process. SMP2
standard has been successfully used in various application
domains as the simulation model specification to develop
large complex simulation systems, and it has proven to
promote technical interoperability. However, SMP2 lacks
behavioral modeling capability and mainly specifies the soft-
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ware implementation of simulation models. It is difficult
to describe the characteristics of multi-domain and multi-
subsystem for effectiveness simulation using SMP2.

The model specification (BOM or SMP2) essentially
is specification for technical implementation of simulation
models and is not application domain oriented. The model
specification-based method can be used to represent mod-
els of various application domains in theory; however, it
inevitably lacks description of AIK and cannot support
domain-specific modeling directly. The M&S practice shows
that the model specification-based method needs to describe
the AIK for each development process of effectiveness
simulation applications, and thus the workload is heavy,
and this method lacks attraction to effectiveness simulation
researchers.

2.3 Unified model framework-based method

The main components of complex simulation systems include
simulators and various kinds of simulation models. The rela-
tionship between models and simulators are usually specified
by simulation protocols (e.g., abstract simulator protocol of
DEVS [9]). Another important relationship is the interfaces
and interaction patterns among these simulation models. The
M&S community proposes the method of model frameworks
(or model architectures) to specify the types of the simulation
models and their interaction relationship.

Model frameworks are built based on abstracting AIK
from different simulation applications using M&S experi-
ence in the problem domain. M&S practitioners gradually
figure out basic kinds of simulation models and their main
interaction relationships in CoSES through years of prac-
tices. Though normally these frameworks are not described
using formal methods, the AIK is purified and built into them.
Moreover, the model framework provides extension points
which are used to integrate AVK for different specific simu-
lation applications.

Model frameworks are usually used in CoSES at the
engagement level or higher levels since simulation applica-
tions of these levels contain models from various domains
which have complex interactions. The model framework is
of vital importance to integrate model and promote devel-
opment efficiency. Typical examples of simulation systems
using model frameworks are Extended Air Defense Simu-
lation (EADSim) at the engagement level for air defense
simulation analysis [16], and JMASS [17] at the mission
level. However, current research exhibits the following dis-
advantages for existing model frameworks. Firstly, on the
one hand, model frameworks lack platform-independent
description; on the other hand, canonical and unified model
specification has not been adopted for the implementation
of model frameworks; these two aspects hamper the extensi-
bility and composability of the model framework. Secondly,
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the behavioral part of the model framework is mostly imple-
mented as black boxes, so model reuse is not promoted and
it is not flexible to revise the behavioral model. Thirdly,
model frameworks lack domain-specific mechanisms (e.g.,
common modeling libraries and modules) for behavioral
modeling in subdomains.

2.4 Unified simulation protocol-based method

The main purpose of this method is to support the intercon-
nection and interoperability of different simulation systems,
promote the reusability of simulation resources, and enable
the composable development of simulation applications via
a unified simulation protocol. The most prominent simula-
tion protocol is HLA [15] proposed by Defense Modeling
and Simulation Office (DMSO) in 2000 (followed by HLA
Evolvedin2010 [18]). HLA is a general-purpose architecture
for distributed computer simulation systems, which enables
simulations systems interact with each other regardless of
the computing platforms based on run-time infrastructure
(RTT). HLA is widely used in interconnection of training
simulators and simulation systems in the military field. It pro-
vides the model specification called federation object models
(FOMs) and simulation object models (SOMs) which specify
the object data flow and interaction message.

Essentially HLA is an interface model specification and
lacks the description of model structure and behavior, and
thus HLA lacks support for semantics-based model com-
position. Moreover, HLA-based method provides domain
modeling support via integration of other tools and platforms.
This integration causes problems such as difficulty for main-
taining and inefficiency for the simulation run.

2.5 Summary

The categorization of four groups is neither absolute nor
complete, and there is a trend to combine them for spe-
cific application purposes, for example, DEVS/HLA [8,19].
Table 1 presents an overview of the characteristics of these
methods. These four methods contain mainstream M&S
efforts based on typical technological spaces for effective-
ness simulation, and try to cope with the multi-subsystem,
multi-domain and multi-application scenario characteristics

of effectiveness simulation by extending the existing tech-
nological spaces. Thus they are limited as far as the two
modeling requirements are concerned, and a new method
combining these efforts should be explored.

3 A model framework-based domain-specific
composable modeling method

The literature review shows that a model framework is of
vital importance to promote development efficiency and
model reuse in different simulation applications. And the
model framework can act as the integration infrastructure
to compose models from multiple subdomains. However,
as pointed out in Sect. 2.3, existing model frameworks
mostly lack formal specification and DSM support. In this
section, we propose a SMP2-compliant model framework-
based domain-specific composable modeling method to meet
the two modeling requirements. Firstly, we analyze how to
exploit DSM for effectiveness simulation and identify that the
composition of domain-specific models is a critical issue in
CoSES; then we introduce a unified model framework which
contains two subframeworks based on a domain partition
of combat system behaviors; finally we propose a domain-
specific composable modeling method which uses the model
framework to compose diverse domain-specific models, and
discuss the technical implementation of the method.

3.1 Domain-specific modeling for effectiveness
simulation

Domain-specific modeling is proposed as a new software
development paradigm in software engineering community.
DSM mainly aims to raise the modeling abstraction level
beyond current general programming languages by using
DSML, to increase the productivity and enable the domain
experts to take part in the software development by speci-
fying the solution directly using problem domain concepts
[20,21]. Computer simulation models technically are soft-
ware models too, and thus can also adopt a DSM approach
[22]. Currently M&S researchers usually study DSM for
M&S from the following three aspects of concern: problem-
oriented solution by constructing DSML or domain-specific

Table 1 A comparison of M&S

Simulation Model Simulation model M&S
methods for CoSES . . .

protocol framework specification formalism
AIK incorporation No support Support No support No support
DSM support None Partly None Partly
Model composition and reuse No support Support Support Support
Model maintenance and extension Hard Normal Easy Easy
Behavioral description No support No support Partly support Support
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modeling environment (DSME), generic tool extension to
provide domain support, and adaptation of software engi-
neering (especially model-driven engineering) techniques to
enable DSM for M&S system development (more details of
this categorization can be found in [22]).

Unlike the four technique-oriented methods discussed
in Sect. 2, DSM adopts an application-oriented philoso-
phy to provide an integrative solution tailored for a specific
application domain. This application-oriented philosophy is
supported by the comprehensive usage of existing model-
ing techniques and domain knowledge. Thus DSM provides
a feasible technical solution to meet the requirement of
multi-domain modeling. There have been plenty of research
and practice for each subject domain in CoSES, and large
amounts of models have been accumulated in each domain.
This lays a sound foundation for domain engineering and
enables DSM in each domain by extracting domain con-
cepts for DSML construction from domain knowledge and
developing code generators for the implementation of DSML
semantics. DSM provides domain modelers with familiar
modeling concepts and supports automatic generation of exe-
cutable simulation models (or code) from domain-specific
models, and thus it can raise the modeling abstraction level,
promote model reusability, and increase productivity in each
subject domain.

CoSES is a typical kind of complex systems which con-
tain different subsystems across diverse subject domains.
M&S of such complex systems needs to compose models
from different subject domains to enable integrative simu-
lation of the whole system. Different domains of complex
systems are modeled by multiple DSMLs, so the syntax inter-
operation and even semantic composition of these DSMLs
should be solved appropriately to enable model-based analy-
sis and integrative simulation. Though DSML composition is
intensively researched in software engineering field from the
perspective of software system development, these research
concentrate on solving the multi-view (aspect) modeling
problem of software systems [22-24]. It should be noticed
that software aspects usually refer to data structure, user
interface, behavioral description and so on [23,24]. While
simulation system development needs to model in broader
subject domains not limited to computer science, and needs
to cope with more complex situations for mechanism abstrac-
tion, model implementation and simulation execution.

3.2 A unified effectiveness simulation model framework

The construction of a model framework needs to not only
understand and employ the domain knowledge of CoSES
from the aspect of the knowledge engineering, but also grasp
the technical implementation of the simulation models from
the aspect of the domain engineering. Constructing a model
framework should answer the following questions: (1) Which
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part of the knowledge is AVK? (2) How to extract the AIK
and compose them into a model framework (3) Which part
is AIK? And how to design extension points for subdomains
and enable the domain modelers to use the AVK for DSM?
and (4) How to generate implementation code of simulation
models automatically from the model framework to promote
development efficiency?

The behaviors of combat systems are usually conducted in
the physical domain, the cognitive domain, the information
domain and the social domain [25]. We do not study behav-
iors in the social domain in this research. Thus effectiveness
simulation behavioral models are divided into two categories:
combat equipment models which mainly describe behaviors
in the physical and the information domain (physical behav-
ior for short), and cognitive decision models which describe
cognitive behaviors. Combat equipment models are built
based on the physical and informational principles which
remain invariant with the change of combat mission or situa-
tion. Moreover, the interfaces and relationships among these
models are explicit and relatively stable. In contrast, cogni-
tive decision models are more flexible since tactic decisions
vary with the type of decision makers, combat missions, and
theater situations. So these two kinds of models need to be
built based on separate model frameworks using different
modeling methods. In this subsection we introduce two sub-
model frameworks for physical domain models and cognitive
domain models.

Since the cognitive model framework is built based on the
physical model framework and finally seamlessly integrated
into it, these two frameworks compose one unified model
framework.

3.2.1 The physical model framework

To construct the physical model framework, we need to
answer the aforementioned four questions. Firstly, the AIK
in the physical domain includes the types of the equipments,
the hierarchical structural relationship of the equipments, the
performance attributes or parameters of each kind of equip-
ment, and the interaction relationship patterns among the
equipments.

Secondly, based on years of CoSES experiences of our
research group [26], we explicitly describe these knowledge
using unified modeling language (UML) and build a phys-
ical model framework. Figure 2 presents the top-level view
of the physical model framework, which describes the main
structure of the physical part of CoSES as follows. A simu-
lation model framework (¢#mSMF) contains at least one force
side (tmSide) which comprises force groups (tmGroup) and
combat platforms (tmPlatform). The platform (tmPlatform)
is at the heart of this framework, which can be aggregated
into force groups (tmGroup) or directly belongs to force
sides (tmSide), and it is the physical carrier for weapons
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Fig. 2 The physical model

framework for CoSES: top-level
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Fig. 3 A detailed view of the physical model framework: the combat platform model family

(tmWeapon), sensors (tmSensor), communicators (tmCom-
municator), and countermeasures (tmCountermeasure). All
equipment models inherit directly or indirectly from a vir-
tual type model called “tmSimModel”, which is a basic
specification for all simulation models. Four kinds of equip-
ment models (tmGroup, tmCountmeasure, tmPlatform, and
tmWeapon) are modeled as moving entities, and thus they
inherit from the model “tmSimEntity”.

The abstract classes of the framework are further elabo-
rated. For length limitation only the detail of combat platform
modelsis presented in Fig. 3 as atypical example. Other kinds
of equipments are elaborated in a similar way. Figure 3 shows
typical combat platforms from the space, the air, the surface,
the ground, and the underwater. For example, the airborne
platforms (#mAirObject) are categorized as three kinds: fixed-
wing aeroplanes (tmAeroObject), unmanned aerial vehicles
(tmUAV), and helicopters (tmHeloObject). A platform can
contain other platforms from the same category or another
category, e.g., airborne platforms can be equipped with sev-
eral sonobuoys (tmSonobuoy). A number of attributes and
operations are added in each model to specify its basic struc-
tural and behavioral aspects, and they are hidden in the figure
for conciseness.

Thirdly, the AVK of the framework comprises the val-
ues of the attributes, the concrete physical behavior of the
equipment, the specific interaction relationships between
equipments, and the structural formation of the forces. The
framework only provides implementation interfaces as exten-
sion points for specific simulation applications. And the
modelers can use their AVK to concretize the simulation
models based on the model framework. For example, the
values and the operation of the equipments are not specified
in the model framework, and the modelers need to set the
values and implement the operations for specific simulation
applications.

Fourthly, a computer simulation model is a special kind of
software, and it should be executed by a specific simulator.
Thus simulation models should describe the simulator inter-
face and other simulation-related aspects, and this description
is often guided by a specific model specification. Although
UML is a powerful language for the design of the model
framework and it can explain the model framework in an
explicit and well-understood manner, it is not a special-
ized simulation model specification. To implement the model
framework and support automatic code generation, we need
to transform the UML-based description of the physical
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model framework to a SMP2-compliant model (its name is
“catalogue” according to SMP2 standard [ 14]), and then exe-
cutable code is automatically generated from that catalogue.
As mentioned in Sect. 2.2, SMP2 is a MDA-compliant simu-
lation model standard which promotes model composability
and supports automatic platform-specific code generation
from its platform-independent model. Thus we choose SMP2
as the implementation standard for the model framework.
Using the model transformation (MT) techniques presented
in [27], we transform the model framework into a SMP2
catalogue model which is a platform-independent model (as
presented in the left part of Fig. 4).

The left part of Fig. 4 presents the top-level view of
the catalogue, which describes the model components, their
inheritance and reference relationship, and their interfaces
of the SMP2-compliant CoSES model framework. The cat-
alogue uses namespace as its categorization mechanism and
the model framework can be divided into two groups of
namespaces. The first group is transformed from the physical
model framework as shown in Fig. 2, and this group includes
namespace CounterMeasure (corresponding to tmCounter-
Measure in Fig. 2), namespace Communicator (tmCommu-
nicator), namespace Group (tmGroup), namespace Platform
(tmPlatform), namespace Sensor (tmSensor), namespace
Weapon (tmWeapon), and namespace BaseModel (tmSMF,

(v’ file:/D:/CoSESModelFramework/PhysicalModelFramewo
4 Document Root
4 <catalogue> Catalogue PhysicalModelFramework {
4+ Namespace BaseModel
4 Namespace CommonDataType
4+ Namespace Communicator
4 Namespace CounterMeasure
4 Namespace Group
4+ Namespace Interaction
4+ Namespace Platform
4 Interface IAirbase
+ Model tmPlatform

4+ Namespace AirObject {
+ Model tmAeroObject
+ Model tmAirObject s
+ Model tmHeloObject 5
; public:
Model tmUAV

4 Namespace GroundObject
* Model tmAirDefenseBase
Model tmAirfield
+ Model tmGroundObject

tmSide, tmSimModel and tmSimEntity). The second group
is transformed form the attributes and interaction relation-
ships that are hidden in Fig. 2, and this group includes
namespace CommonDataType and namespace Interaction.
The namespace CommonDataType specifies all data types
of the simulation models. The namespace Interaction speci-
fies the event types and the interface types of the simulation
models. Figure 4 also shows a detailed view of namespace
platform which corresponds to the platform model family
presented in Fig. 3.

Currently SMP2 supports C++ code generation [14], and
the framework code is automatically generated from the cat-
alogue as shown in the right part of Fig. 4. For example,
the user chooses the model fmPlatform and click on the
code generation, and then a series of C++ code is gener-
ated automatically. Other parts of the model framework are
implemented as C++ code in the same way. Finally all com-
ponents of the model framework are built as dynamic linked
library (DLL) files, which can be executed by the SMP2 sim-
ulator. The generated code for each model is the skeleton of
model implementation. The right part of Fig. 4 only shows
part of the code skeleton for length limitation. The generated
code contains the following parts: SMP2-compliant frame-
work code, references of other files, model parameters (e.g.,
CruiseSpeed), model operations (e.g., GetCruiseSpeed)()),

namespace Platform

class tmPlatform:
virtual public ::Smp::IDynamicInvocation,
virtual public :Smp::Mdk::Management::ManagedModel,
virtual public ::Smp::Mdk::Composite,
virtual public ::Smp::Mdk::Management::EventProvider,
virtual public ::Smp::Mdk::Management::EventConsumer,
virtual public ::BaseModel::tmSimEntity,
virtual public ::BaseModel::IDecisioriable,
virtual publi
virtual public ::BaseModel::IWeaponLockSubscriber

:Group::IGroupNode,

tmPlatform(void);
tmPlatform( Smp::String8 name, Smp::String8 description, Smp:IComposite* ¢
virtual ~tmPlatform(void);

Fields

* Model tmVehicle Z
4+ Namespace SpaceObject
+ Model tmSatellite
+ Model tmSpaceObject
4+ Namespace SubObject
4 Namespace SurfaceObject
4 Namespace Sensor
+ Model tmSensor
4 Namespace Fuze
4 Namespace Optical
4 Namespace Radar
4 Namespace Sonar
+ Namespace Weapon

private:

public:

private:

public:

// Cruise speed(m/s)
:Smp::Float32 CruiseSpeed;

=Smp::Float32 GetCruiseSpeed() const {return CruiseSpeed;}
void SetCruiseSpeed(const :Smp::Float32& newValue) {CruiseSpeed = newValue;}
// maximal speed (m/s )

:Smp::Float32 MaxSpeed;

:Smp::Float32 GetMaxSpeed() const {return MaxSpeed;}
void SetMaxSpeed(const ::Smp::Float32& newValue) {MaxSpeed = newValue;}

Fig. 4 An overview of SMP2-compliant model framework and a code generation example of model rmPlatform
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structural container relationship (e.g., the platform model
contain a weapon list which can integrate weapon models),
interfaces between models, and interfaces for the simula-
tor. As discussed in the third question, the modelers need
to finally implement the model by specifying its concrete
structure and behavior based on this code skeleton.

3.2.2 The cognitive model framework

The construction of the cognitive model framework also
needs to answer the aforementioned four questions. Actually
we had explicitly studied decision modeling in our previous
work [5,6]. In this paper we reorganize the relevant work
and present it in a new manner to answer the four questions.
In this work, behavior modeling in the cognitive domain is
mainly referred to as decision modeling which concentrates
on combat platform decision modeling at the engagement
level, and we mainly study how to model the tactics of main
combat platforms.

Firstly, the problem analysis was performed on the cog-
nitive behavior of combat platforms [5]. We found platform
tactics essentially are a series of “IF... THEN...” specifica-
tions to specify how the platform should behave under certain
circumstances. IF stands for the situation space of all condi-
tions where the platform confronts, and THEN stands for the
order space of decision choices which the platform should
perform according to the concrete situation. So the AIK for
decision modeling contains the items of the situation space
and the order space (e.g., typical tasks and phases of the plat-
form), and the combination rules and patterns of these items
to form tactic rules.

Secondly, since the items of the order space correspond to
those of the situation space, the pivotal problem of decision
modeling is how to describe the situation space. Moreover,

the cognitive model is different from the physical model. The
cognitive model should be designed and implemented using
another technological space. Based on the problem analysis
and the characteristics of decision modeling, we designed the
script-based cognitive model framework of the simulation
system (as shown in Fig. 5). Each kind of combat platform
models (tmPlatform) has one main task script (MainTask)
which specifies the basic decision process, and the platform
model will call the main task script at each decision time
step via StepDecision function of rmPlatform. tmPlatform
and MainTask are navigable to each other, and MainTask can
visit corresponding interface functions and variables. The
target information is stored in a target list (tcTarget). When a
new target is detected, MainTask will arrange a TargetTactic
to cope with the new target via an interface function Set7Task()
of tcPlatform. At each decision time step tmPlatform will call
MainTask to traverse tcTarget and perform the TargetTactic
for each target. The script-based framework provides three
mechanisms to describe the timing information, decision
status and condition of decision models: Timer, Memory-
Variable and ScriptEvent. Timer mechanism and ScriptEvent
mechanism are managed by tmPlatfom and valid in all scripts
of the platform model. MemoryVariable is managed by tcTar-
get and valid in the corresponding TargetTactic script. The
ScriptEvent is inherited by the ExternalEvent which con-
tains three kinds of events: SimulationEvent, GuardEvent and
TimerEvent.

Thirdly, the model framework only provides the types of
items of the situation space and the order space. AVK com-
prises the knowledge to combine the items from the situation
space and the order space based on AIK to form specific tac-
tical rules in a certain combat scenario. Thus the modelers
can use their AVK to set the values for each item (if there
is any attribute), specify the combination of each rule, and
assemble these rules to form a specific decision model.

Platform Event lﬂ'g@tEve nt J

- 3

InternalEvent
0.* L

R 2
T tcTarget g
0. =900

0..

0.*

-Name : String |0..*

[

ScriptEvent ‘ [Timer J flatform Task MainTask - TargetTactic MemoryVariable
0.+ ! T I o

| Task

ExternaIEvent
[ |

]

—

-GuardFunc

SimulationEvent IGuardEver)} ‘ TimerEvent
-SimClock : double | ’-TlmerVaIue:floal GuardTask | [EventTask
-ReturnValue

-EventHandler:

Fig. 5 A script-based cognitive model framework [6]
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Fourthly, the model framework is implemented using
python and these decision models can be interpreted by
Python interpreters directly.

3.2.3 The unification of the physical model framework and
the cognitive model framework

The cognitive model framework is developed based on the
physical model framework and these two frameworks are
combined together by pre-built interfaces. At the code level,
we implement these interfaces as a series of Python/C++
interface functions, which enable the interaction of decision
models and physical domain models. On the one hand, the
decision model mainly inquires three categories of informa-
tion from the physical domain model: platform parameters
(including parameters of subsystems of the platform, e.g.,
weapon range), current platform status (e.g., position, veloc-
ity), the information of targets and the ally. On the other
hand, the physical domain model receives orders from the
decision model: movement, subsystem (including weapon,
sensor, communicator, and jammer) management and forma-
tion control. There is also interface support for the decision
model to use Timer, MemoryVariable and ScriptEvent mech-
anisms.

For each simulation run, the implementation of the uni-
fication of the physical model and the cognitive model is
as follows. Firstly, the C++-based physical model calls the
Python-based cognitive model through the function StepDe-
cision and other interfaces as discussed in Sect. 3.2.3. Then
the Python interpreter executes the cognitive model (Python
scripts) to calculate the decision process. This calculation
relies on the aforementioned pre-built interfaces. The inter-
pretation of the python scripts only execute the code directly
supported by the interpreter, while other parts are actually
executed through C++ code implemented in the physical
model through the pre-built interfaces. That is to say, the
atomic decision action units are implemented in C++ phys-
ical model, and the decision model mainly describe the
decision logic process, set the condition for action units and
organize them in sequence.

3.3 A domain-specific composable modeling method
and its technical implementation solution

As discussed in the two subsections above, DSM can
effectively supports multi-domain modeling, and the model
framework provides the infrastructure for reusing models
in different simulation applications and composing mod-
els of different subsystems across multiple domains. In this
subsection, we firstly propose a domain-specific compos-
able modeling method based on the unified effectiveness
simulation model framework and our previous work on mod-
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eling methods for complex simulation systems [4], and then
present a technical implementation solution of the method.

3.3.1 The domain-specific composable modeling method

We had proposed a DSM-based multi-paradigm modeling
methodology to enable formal and automated model devel-
opment lifecycle for complex simulation systems in [4]. This
methodology comprises the following four phases: The first
phase is DSM-based conceptual modeling, and this phase
mainly uses DSM techniques to construct a domain-specific
and formal conceptual model; the second phase is model
framework-based model architecting and integration, and
this phase mainly employs the model framework for overall
model design and integration for a simulation application;
the third phase is M&S formalism-based model design and
formal analysis, and this phase uses formalisms to support
domain-specific model design and analysis; and the fourth
phase is SMP2/C++ transformation based model implemen-
tation, and this phase generate C++ code from the model
framework using a C++ code generator for SMP2. Since
CoSES is a typical kind of complex simulation systems, we
propose a model framework-based domain-specific compos-
able modeling method (as shown in Fig. 6) based on this
methodology and comprehensive utilization of the research
fruits of current methods.

The proposed method comprises four layers: the model
framework layer (supports the second phase of the method-
ology [4]), the behavior representation layer (supports the
fourth phase), the simulation modeling formalism layer (sup-
port the third phase), and the DSML layer (support the first
phase). The first three layers are mainly used to model the
combat behaviors at three abstraction levels, and these behav-
ioral models are based on the entity structure and interaction
relationship specified by the model framework layer.

(1) As discussed in Sect. 3.2, the SMP2-compliant model
framework layer comprises two parts which are con-
nected by a cognitive decision interface framework.
The interface framework is technically comprises of a
set of Python/C++ transformation functions. The model
framework layer plays a dual role in the whole model
development process: On the one hand, the framework
is the overall design scheme for the whole simulation sys-
tem and it provides the top-level architecture (structural
constraints for each DSML as presented in Fig. 6) for
the design of subsystem models and subdomain models;
on the other hand, the framework acts as the integration
infrastructure to integrate subsystem models and sub-
domain models, and the behavioral code generated by
these models can be embedded into the structural code
generated by the model framework.

www.manaraa.com



A model framework-based domain-specific composable modeling method for combat system. . . 1211

(2) The behavioral representation layer, i.e., the model
implementation layer, uses C++ to implement SMP2-
compliant physical domain models and Python to imple-
ment cognitive domain models. The physical domain
model is implemented using C++ since physical behav-
iors are relatively stable and can be hard-coded in C++.
The decision script framework is implemented using
Python since decision behavior is flexible and model
revisions take effect immediately without rebuilding.
Eventually, all Python code are transformed to C++ code
for integrative simulation in SMP2 environment.

(3) The formalism layer utilizes common M&S formalisms
to provide behavioral semantics for domain-specific
models. Figure 6 lists a series of common formalisms
to describe certain aspects of the behaviors of differ-
ent combat equipments. Generally speaking, formalisms
such as statecharts [28], Modelica [29], and block dia-
gram [30] can be used to describe state transition and
movement aspects in the physical domain, while event
graph, activity diagram, and Petri Nets are used in
cognitive domain for to model event triggers of tactic
decisions, decision activities and processes. However,
the listed formalisms are neither complete nor absolute,
and other formalisms like DEVS, Markov Chains can be
also used. The formalism layer not only provides support
for model design, but also helps the modelers to analyze
the models across different domains using formal meth-
ods and enables early verification and validation.

(4) The DSML layer provides DSME and DSML for typ-
ical CoSES domains such as missiles, radars, warships
and so on. A DSML metamodel uses the corresponding
structural information in the CoSES model framework
to design its structural aspect and chooses appropriate
M&S formalisms based on its domain behavioral pat-

terns to design its behavioral aspect. For example, the
platform decision DSML can use the Command and
Control (C2) interface in the framework to design struc-
tural coupling elements and use Petri Nets to model
its decision process [5]. This layer provides the mod-
eler with domain-specific languages and environments,
which facilitate problem description and conceptual
modeling at a higher abstraction level. Moreover, com-
bined with its semantic anchoring mechanism and code
generation infrastructure, this layer supports formal rep-
resentation and automatic implementation of conceptual
models.

These four layers conforms to the four phases of the multi-
paradigm modeling methodology [4]. This method provides
formal representations for products of all model develop-
ment phases, thus it enables model reuse and composable
simulation at four layers. The transformation from higher-
level models to lower-level implementations is automated by
model transformation and code generation. So this method
promotes development efficiency of effectiveness simulation
applications and supports flexible, high-level and generative
modeling.

This method adopts the principle of model architecture-
based overall model design, multi-paradigm-based domain-
specific detailed model design, formalism-based formal
model analysis, automated model implementation, model
framework-based model implementation and composable
simulation. Thus it provides an integrative solution for
composable and multi-domain modeling. As discussed in
Sect. 2.5, this method has integrated the research fruits of
M&S formalisms, simulation model specification and model
framework to support model design, implementation and
integration, respectively. According to Fig. 1, only simula-

DSML
DSML Laver |« Radar Missile Torpedo Sonar Warship Fighter | |SubMarine XXX
Y DSML DSML DSML DSML DSML DSML DSML DSML
Semantic
¥ Anchoring
Formalism Statechart| |\ . . Block XXX Event Activity Petri XXX
Layer S Diagram| |Formalism Graph Diagram Nets Formalism
Code Code
Generation J [Generation
Behavior — -
»- Representatio C++ Based Physical Behavior Model Python BasedMCO%ger:ltlve Behavior
n Layer
Model @ @
Integration C tive Dedisi
Model SMP2-based Physical Model °9"|';'t‘frfa§§'s'°“ Script-based Cognitive Model
Framework Framework Framework
Layer Framework
Physical Domain Modeling Cognitive Domain Modeling

Fig. 6 A model framework-based domain-specific composable modeling method for CoSES (adapted from [4])
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tion protocol is not researched in this work, the reason for this
is that distributed simulation is outside the research scope of
this work.

3.3.2 Technical implementation

The proposed modeling method provides a collaborative plat-
form for different stakeholders of effectiveness simulation
application, and to use this method for effectiveness simu-
lation needs the joint efforts from domain experts, domain
modelers, M&S experts, formalism modelers, and software
engineers. The technical implementation solution for the pro-
posed method is presented in Fig. 7, including the following
essential steps.

(1) Based on domain knowledge and M&S experience a
SMP2-compliant model framework (a catalogue file) is
constructed as the backbone of CoSES system, which
was discussed in Sect. 3.2. The framework construction
relies on the joint efforts from the M&S experts and
the domain experts of combat equipments to identify
the AIK and the AVK in CoSES domain. As also men-
tioned in Sect. 3.2, C++ code is generated from the model
framework to implement the basic entity hierarchy and
interaction interfaces of the whole simulation system.

According to language engineering of DSML, it com-
prises abstract syntax (including constraints), concrete
syntax, and semantics [31-33]. The metamodel of a

@

3)

“4)

DSML is designed based on two knowledge sources:
The first is the domain knowledge from domain experts,
and the second is the structural information (includes
entity formation, attributes, parameters and interaction
interfaces) from the model framework. Moreover, the
behavioral aspect of the metamodel is designed using
one or more simulation modeling formalisms suggested
by M&S experts according to their experience and exper-
tise. Then the concrete syntax is attached to each element
of the metamodel, and a DSME is generated based on the
built metamodel using metamodeling platforms such as
AToM3 [34] and generic modeling environment (GME)
[35].

Domain modelers build conceptual models with DSML
in DSME. These models are comprised of domain-
specific entities and relationships which are familiar to
the problem owners. Since all DSMLs are based on
the same framework, the domain-specific models built
using these DSMLs have the common foundation for
model composition. The semantics of DSML is achieved
either by semantic anchoring which transforms domain-
specific models to formalism-based models based on the
metamodel mapping relationship, or by code generation
which generates executable code from domain-specific
models using code generators developed by software
engineers.

Modelers who are familiar with certain M&S formalisms
can design simulation models based on selected for-
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Fig. 7 A technical implementation solution for the composable modeling method
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malisms using their supporting tools (for example,
CPN tools for Petri Nets). Then formal analysis and
early verification and validation can be performed on
formalism-based models which can be either built by the
modelers or transformed from domain-specific models.
We can transform domain-specific models from different
domains to the same formalism and perform joint formal
analysis and achieve semantic composability of these
models at the formalism level. Usually, the M&S experts
and software engineers have developed code generators
for common formalism-compliant platforms which gen-
erate behavioral code from formalism-based models.

(5) The behavioral code generated from the formalism-
based models or domain-specific models is combined
with the framework code generated from the SMP2-
compliant model framework, and these two kinds of code
are built together as executable simulation model compo-
nents. Then these components are stored in an executable
simulation model component library. Since the behav-
ioral aspects of the models are based on the structural
parts specified by the model framework, these two kinds
of code are seamlessly integrated into one executable
model.

(6) Effectiveness simulation application users select the
components and compose them into an assembly file
based on the catalogue file. Also they need to construct
concrete simulation scenarios and design of experiment
files to configure the simulation system. Finally they run
the application specified by the three aforementioned
files in the integrative SMP2 effectiveness simulation
environment, collect and analyze the simulation results.

4 Domain-specific composable modeling in typical
CoSES domains

As stated in Sect. 3.1, the composition of domain-specific
models from different subject domains is a critical issue for
M&S of complex systems. According to the levels of the
conceptual interoperability model [36], higher levels of inter-
operability are more demanding for model development and
execution lifecycle. The proposed method supports concep-
tual interoperability for the following reasons: Firstly, the
SMP2/C++ implementation of domain-specific models pro-
vides the syntactic interoperability; secondly, the structural
aspect of DSMLs is designed based on the unified model
framework which provides the structural semantics; thirdly,
the behavioral aspect of DSMLs is constructed based on
the formalisms which provide explicit behavioral semantics;
fourthly, based on the three kinds of interoperability support,
DSM-based conceptual modeling building domain-specific
models in different subject domains can achieve conceptual
interoperability.

According to the top-level view of the model framework
as presented in Fig. 2, typical subject domains in CoSES
contain the combat platform, the C2 system, the sensor, the
weapon, the communicator, and the countermeasure. The
combat platform model is a fundamental element in the
model framework since it is the physical carrier of other affil-
iate equipment models and the C2 system model. From the
technical aspect of composable modeling, we can catego-
rize these domains into three groups: the platform domain,
the affiliate equipment domains (including sensors, weapons,
countermeasures) and the decision domain.

The combat platform model is the backbone of the
CoSES model framework which integrates affiliate equip-
ment models and its decision model. However, the structural
complexity of the model framework is not dealt with by
DSM-based behavioral modeling, but by a code generator for
CoSES catalogue. This code generator generates framework
code such as simulator interfaces, interfaces for submodels
and other infrastructure implementation code from the model
tmPlatform presented in Fig. 4. Thus the main task left for
DSM is to model the dynamic behavior based on the gener-
ated structure.

In this section, we concentrate on using DSM method for
platform modeling, decision modeling and missile modeling
(as a typical example for the modeling of affiliate equip-
ments) for length limitation. Firstly, the general DSM process
for CoSES domains is analyzed, and then DSM researches
in these three subdomains are explicitly presented following
the general process.

4.1 DSM process using GME tool suite

Since DSM tools are built based on DSM methodology and
state-of-the-art technologies, they have exhibited promis-
ing potentials for simulation modeling. Among all DSM
platforms, GME is considered as the centerpiece model-
ing technology for Model Integrated Computing (MIC) [35].
GME is an open-sourced DSM tool suite with infrastructural
support for metamodeling, DSME generation and interpreter
construction. In this work we choose GME as the DSM plat-
form. A DSML usually contains abstract syntax, concrete
syntax and semantics, and thus DSM for CoSES using GME
usually includes the following steps:

(1) Metamodeling the DSML abstract syntax based on
domain analysis and the model framework Currently
metamodeling is the mainstream method to specify the
abstract syntax of a DSML since it is concise, formal and
supports model-driven development of modeling lan-
guages [37]. The metamodeling language of GME is
MetaGME, which can be transformed to Meta-Object
Facility (MOF) [38]. Metamodeling should be based

@ Springer

www.manaraa.com



1214

X. Lietal.

on domain analysis to extract typical behavior patterns
which can be formally described by behavioral for-
malisms. Unlike DSM in software engineering field,
DSM for CoSES mainly model the behavior, so meta-
modeling depends on the interfaces and entity elements
specified by the SMP2 catalogue and the cognitive mod-
eling framework.

(2) Metamodel-based DSME generation Then a DSME
is generated based on the DSML metamodel using
GME meta-interpreter and the DSML designers attach
domain-specific icons to the elements of the metamodel
to specify the concrete syntax, which promotes the user
friendliness for domain modelers.

(3) Denotational Semantics implementation by model trans-
formation Since the DSML is designed based on M&S
formalisms, its semantics can be implemented by model
transformation transforming the domain-specific mod-
els to formalism-based models. Semantic anchoring is
proposed to achieve DSML semantics via transform-
ing them to a set of “semantic units”, and a tool suit
is built to support semantic anchoring [39]. In this tool
suit, the Graph Rewriting and Transformation Language
(GReAT) [40] is a graph transformation language and
a toolset to specify and execute model transformation
based on mapping relationship between metamodels.
GReAT is incorporated into the GME tool suite. This
step is optional and only necessary if we choose to imple-
ment the DSML semantics based on certain formalisms
or perform formalism-based analysis.

(4) Operational semantics implementation by code genera-
tion GME provides a Builder Object Network (BON)-
based framework for interpreter construction using
Visual Studio. The users can use the BON interpreter
wizard to automatically generate the framework code,
and implement the code generation algorithms in func-
tion InvokeEx() by C++ coding in Visual Studio [35]. The
framework code provides the GME interface implemen-
tation, fundamental code generator methods, and other
implementation supports, and thus the users can con-
centrate on only the implementation of code generation
rules. After the coding, the C++ project is built as a DLL
file, and then the DLL is registered as an interpreter com-
ponent to GME platform. This registered interpreter is
used as a code generator for domain-specific models.

4.2 DSM in the platform decision domain

We had explicitly studied DSM in platform decision domain
in the work presented in [5]. In this article we briefly intro-
duce these four steps and how they are incorporated into the
proposed composable modeling method. (1) DSML Meta-
modeling. A domain analysis is performed to explore the
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decision modeling, and the decision model is divided into
a condition space and an order space. The two spaces have
three dimensions each and the number of combinations of
these six dimensions is quite huge. Thus we proposed a deci-
sion modeling scheme using a phase-based reorganization
of the two spaces. And a metamodel following this scheme
is constructed using GME, which imports structural infor-
mation from the model framework. (2) Metamodel-based
DSME generation. After attaching domain-familiar icons
to the modeling elements of the metamodel, a DSME is
automatically generated which is similar to Fig. 9. (3) Deno-
tational semantics implementation by model transformation.
A series of formalisms are introduced to provide denotational
semantics for the decision DSML, and these formalisms sup-
port formal analysis methods such as temporal analysis, rule
reasoning, probability analysis, state analysis and concur-
rency analysis. Then Petri Net is chosen as the example
formalism to illustrate how to transform decision DSML to
formalisms using GReAT. Formal analysis using the Petri
Net decision model is presented in the case study. (4) Opera-
tional semantics implementation by code generation. Using
the BON infrastructure provided by GME, a code genera-
tor is built to generate Python scripts from domain-specific
decision models. And the Python scripts are incorporated
into the CoSES system via the cognitive decision interface
framework as shown in Fig. 6. Please refer to [5] for more
details on DSM in decision domain.

4.3 DSM in the missile domain

DSM in the missile domain models physical behavior of the
missile which is different from cognitive behavior of platform
decision. Thus we concentrate on the metamodeling, DSME
generation, and C++ code generation, and model transfor-
mation to formalisms is omitted.

(1) Metamodeling the DSML abstract syntax

The key to missile behavior modeling is the differentia-
tion of its movement phases and the kinematic equations for
each phase. Figure 8 shows a top-level view of the DSML
metamodel for missile behavior modeling. The main pur-
pose of this DSML is to specify its movement phase based
on statecharts formalism [28] and kinematic equations which
describe the kinematic characteristics for each phase based
on the causal block diagram formalism [30]. Unlike stat-
echarts, the movement phase is enumerated and the user
can only select among the specified phases (e.g., Ready-
ToLaunchP, TargetGuidanceP phase). Kinematic equations
modeling is the same case, since the kinds of kinematic vari-
ables (KinematicVariable) and the parameter (Parameter) are
also tailored for the platform. The PhaseTransition element
is similar to the Condition element in the platform decision
DSML, and it uses LogicalOperator and GuardExperssions
to specify phase transitions, and it uses Externallnstruction
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Fig. 8 A metamodel of the DSML for missile behavior modeling (top-level view)

as one kind of EventTriggers for GuardExpression. For con-
ciseness the detail of PhaseTransition element is omitted.
The DSML imports two kinds of structural elements from the
catalogue. The first is interfaces, including TargetInfo as the
interface to acquire target information, Externallnstruction
as the interface to receive instructions from the platform, and
Environmentlnfo to acquire environment information. The
second is internal structure of the missile model and they are
described as fields in the tmMissile model of the catalogue.
These attributes include MissileState, Parameter, Kinemat-
icVariable.

(2) DSME generation

After metamodeling, we design the concrete syntax by
attaching domain-familiar icons to the modeling elements.
Then from the metamodel the DSME is automatically gen-
erated as shown in Fig. 9. The DSME is a graphical editor
with domain-specific concepts which are familiar to missile
modelers. It is not error-prone since the abstract syntax and
constraints guide the user to model legally and help them to
locate mistakes by using its “Check” function. The model-
ers construct the missile behavior model by dragging icons,
connecting them, selecting the enumerated attribute, and set-
ting the attribute values. In this DSME, no manual coding
is necessary. The GME-based DSME provides hierarchical
modeling views according to the structural relationship of the
model elements. For example, if you double click the Laun-
chOrder (an instance of PhaseTransition) icon in Fig. 9, a
new modeling view will pop up with PhaseTransition mod-

eling elements (Conditions of Transitions). The models can
be saved as Extensible Markup Language (XML) files to
support file interchange between GME and other tools.

(3) C++ Code generation

Missile behavior model implementation relies heavily
on structural code, which is automatically generated from
the model fmMissile of the catalogue. The structural code
has implemented most of the missile model, except the
StepMotion() function which specifies its behavior for each
simulation time step. So the code generator should generate
a “MissileBehavior.h” C++ header file and a “MissileBe-
havior.cpp” C++ source file to implement domain-specific
behavior models. The code generation contains the following
steps: (1) Build a header file and a C++ source file (.cpp file);
(2) Generate the reference code in each file to make appro-
priate references to the framework code files and define the
variables and functions; (3) Generate code to implement the
phase transition behavior in the StepMotion() function. (4)
For each movement phase, generate the code to implement
the kinematic equations. The interfaces, MissileState, Para-
meter, KinematicVariable, and BehaviorPhase have been all
defined and implemented in the framework code, and thus
the code generator should generate the same names as theirs
in other files. After the code generation, the two generated
files are grouped with other files, which are built into one
DLL file as an executable missile model.

GME provides infrastructural support for building inter-
preters (in this research we mean code generator). We use
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Fig. 9 A DSME for missile behavioral modeling using GME

the BON interpreter wizard to automatically generate the
framework code and implement the abovementioned algo-
rithms in function InvokeEx() in C++ using Visual Studio
[35]. The implementation includes three parts: the first part
is node traversal which is done by the functions provided by
the framework, the second part is the code generation algo-
rithms for each kind of nodes, and the third part is other
implementation specific code (e.g., reference to other files).
After the coding, we build the code as a DLL file, register the
DLL as an interpreter component to GME. This interpreter
generates C++ code automatically from the graphic missile
models.

4.4 DSM in the platform domain

The key to combat behavior modeling is to model the behav-
ior of the combat platform, since the platform is the physical
carrier of all equipments and other combat behaviors are
mostly coordinated or controlled by the platform. Platform
behavior contains three parts: platform movement, platform
decision, and affiliate equipment behavior. For combat plat-
form model implementation, decision behavior is the most
complicated part, which is independently described in plat-
form decision model as discussed in Sect. 4.2; affiliate
equipment behavior is implemented in affiliate equipment
models; thus only movement description is left for the com-
bat platform model.

In this subsection, we study DSM in the platform domain
and concentrate on the metamodeling of the platform DSML.
DSME generation and code generator implementation are

@ Springer

similar to the Missile DSML, and they are omitted for length
limitation. The top level view of the platform DSML meta-
model is shown in Fig. 10. Its movement part is almost based
on the same

formalism as the Missile DSML. However, the movement
phases are more complicated than missiles since platforms
need to fulfill multiple tasks. The move phase (MovePhase) is
divided in to five groups: startup phases (StartupP), waypoint
phases (WaypointP), target track phases (TargetTrackP),
threat avoid phases (ThreatAviodP), and maneuver phases
(ManeuverP). Moreover, the decision models (the model
proxy called PlatformDecisionModel) and other affiliate
equipment models (the model proxy called SubEquipModel)
contained in the platform model influence the platform move-
ment. If the platform model contains a decision model, the
movement phase transition is usually controlled by the deci-
sion model (the PlatformDecisionModel can control phase
transition since the TransitionCondition refer to Decision-
Trans). Otherwise, the modeler should specify the transition
conditions. Similar to the missile DSML, the plattorm DSML
also imports two kinds of structural elements from the cata-
logue.

5 Case study
CoSES is usually used to evaluate system attribute alterna-
tives (or tactics alternatives) under the background of SoS

counterwork. Warship sea battle is a typical combat pattern
which involves a diversity of combat entities. In the sea bat-

www.manaraa.com



A model framework-based domain-specific composable modeling method for combat system. . .

1217

PlatformBehaviorModel

<<Model>>
- Parameter
PlatformKind : enum 0.* <<Atom>>
o ,_’ 1 ¢ ParameterKind : enum
0.
MovePhaseTrans - - "
<<Connection>> Kmirzittlgii:able
PlatformState
"] <<Model>> VariableKind : enum
0.1 0. i 0.
PlatformDecisionModel PhaseTransition [o0.; ¢ .+ |MovementPhase| T
<<ModelProxy>> <<Model>> dst I src] <<Model>> EquationReference
N 0.0 L o 0.* <<Reference>>
3 sre dst Environmentinfo
<<Atom>> o,,"
0.
DecisionTrans TransitionCondition 1 K|ne2n<a'\;:g§g]u>a>tlons
<<Reference>> [0 <<Model>>
StaticPhase MovePhase T
<<Model>> <<Model>> 1.
PhaseKind :enum K|neir2:;:)c§et?::t|on
0.*
SubEuquipModel
<<ModelProxy>>
ReadyP EndP StartupP WaypointP TargetTrackP ThreatAvoidP ManeuverP
” <<Model>> <<Model>> <<Model>> <<Model>> <<Model>> <<Model>> <<Model>>

Fig. 10 A metamodel of the DSML for platform behavior modeling: top-level view

tle, the warship confronts a diversity of threats concurrently:
in the air, there are the fighters and air-to-surface missiles;
on the surface, there are enemy warships with artilleries and
surface-to-surface missiles; and there are underwater sub-
marines with torpedoes. The warship needs to cope with
complex situations, survive under these multiple threats and
achieve the combat goals. So how to measure the system
effectiveness of the warship in typical combat scenarios is a
tough issue.

5.1 Basic scenario overview

The basic scenario is as follows. There are two opposed side
in the theater: the Red side comprises a satellite and a warship
with sensors (including radars and sonars) and weapons. The
main task of the warship is to destroy the Blue warship and
survive in the counterwork against the Blue side; the Blue side
has a submarine, a fighter and a warship which are deployed
near the waypoints to fight against the warship and equipped
with sensors and anti-ship weapons. The initial status is that
the red satellite sends a set of waypoints (the position of
the target warship as the last waypoint) to the Red warship,
and the Red warship starts moving toward the first waypoint,
and the platforms of the Blue side are patrolling along the
specified areas around the waypoints.

The warship effectiveness simulation involves lots of sim-
ulation models, such as platform models and decision models
for warships, fighters, and submarines, and the affiliate equip-
ment models of the platforms (e.g., the surveillance radar

model, the surface-to-surface missile model). We had imple-
mented all the aforementioned models using manual coding
in the previous engineering practice. And we found manual
coding is taxing and inefficient. In this section, we use the
proposed modeling method to rebuild the warship platform
model, the warship decision model, and surface-to-surface
missile model.

5.2 DSM-based warship decision modeling [5]

The top-level decision process of the Blue warship is illus-
trated in Fig. 11 using the DSML presented in Sect. 4.2: the
warship is in Waypoint phase after the waypoints are assigned
to it during initialization; it will transit to TargetProcessPhase
if there is any target detected; for each new target, the war-
ship arranges a task to cope with this target according to its
type (air, surface or underwater); the warship will go back
to WaypointPhase again after all targets are processed; the
warship terminates its sea battle process when it reaches the
last waypoint. The task to cope with the corresponding target
is concurrent and the warship can perform several heteroge-
neous tasks simultaneously. Figure 12 describes the warship
anti-surface decision process (WarshipAntiSurface task in
Fig. 11). The other two subtasks are presented in [5]. The
three decision processes share a similar decision logic: When
the target is not threatening (far enough from the warship),
the warship is in TargetProcessPhase to travel to the way-
point while keeping a certain distance from the target, and if
the target becomes a threat, the warship transits to Evasion-
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Phase to take emergency actions to prevent situation being
worse; once the target gets out of the dangerous scope, the
phase goes back to TargetProcessPhase again. The decision
model is relatively simple and it can only execute a single
task for each kind of target.

Our previous work presented in [5] had used transform
the warship sea battle decision model to a Petri Net model.

There are three Evasion places in the model which refer to
the same place, so we modify it by using one EvasionPhase
place instead while preserving all the links of them. Petri Net
has a sound mathematical foundation and supports several
formal analysis methods, and thus formal analysis and early
verification and validation can be performed based on that
Petri Net model. For example, the concurrency analysis of
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sing diffarent models mypical | EXPeTimentno. 1 - 3 4 5 6 7 8

scenarios Scenario 1 1 1 1 2 2 2 2
Strategy S1 S1 S2 S2 S1 S1 S2 S2
Model 1 2 1 2 1 2 1 2
BWDamageRate ~ 0.588 0587 0591 0592 0598 0598 0601  0.601
RWDamageRate ~ 0.685  0.686  0.603  0.603 0556 0557 0543  0.543
DamageRatio 0858 0855 0980 0981 1075 1073 1106  1.106

the anti-air, the anti-sub, and the anti-surface tasks, and the
conflict analysis of the EvasionPhase is performed using this
Petri Net model (see [5] for details).

5.3 DSM-based behavior modeling of the
surface-anti-surface cruise missile (SASCM)

Similar to the decision model, SASCM model is built using
the DSM method. The behavior modeling for SASCM is not
as tricky as decision modeling, since the movement phases
are stable and the kinematic equations are explicit. The
behavior model of SASCM is shown in Fig. 9, which includes
five behavioral phases: ReadyToLaunch phase, Boost phase,
WaypointCruise phase, TargetGuidance phase, and FlyOver
phase. The kinematic equations are specified for each phase,
and the transition conditions are also prescribed inside
each transition. These phases and transition can refer to
MissileState, Environmentlnfo, Externallntruction and Tar-
getInfo. A BON-based code generator is constructed (similar
to the Python code generator) to generate C++ code, which
is incorporated into the SASCM C++ project to build a DLL
file.

5.4 Platform-centered composable modeling

Platform behavior modeling is easier than decision mod-
eling, since movement phase transitions are controlled by
the decision model and the platform movement model only
needs to specify the kinematic equations for each phase.
From the domain-specific model for the platform behav-
ior a C++ header file and a source file is generated, which
implement the StepMotion() function in the framework code,
and these two files together with other framework code files
are built as a DLL file for the warship platform model.
The warship platform decision script is dynamically exe-
cuted during the simulation through the StepDecision()
function in the C++ platform model. Actually this platform-
based composition method is useful for other simulation
applications.

5.5 Scenario design and simulation analysis

As shown in Table 2, we design two typical scenarios, which
set different distances between blue combat platforms, to
study how the geographic distribution of enemy platforms
affects effectiveness. Blue combat platforms are closer to one
another in scenario 1 and farther in scenario 2. In each sce-
nario we consider two strategies in the decision model of Red
warship: The first strategy (S1) deals with the threats from
enemy one by one following the threat grade, and the second
strategy (S2) uses an algorithm for comprehensive evaluation
of all threats and reacts accordingly based on the experiment
results presented in [5]. For each strategy in each scenario,
we run two series of 1000 Monte Carlo simulations with
two kinds of models for warship platform model, warship
decision model and SASCM model: The first is the manu-
ally coded executable models (Model_I) and the second is
the generated code from domain-specific models (Model_2).
The results collected from Monte Carlo simulations exhibit
almost the same effectiveness values: the damage rate of
the Blue warship (BWDamageRate) and the damage rate of
the Red warship (RWDamageRate) using the two kinds of
models. We also find that the overall effectiveness value in
scenario 1 is relatively higher than that in scenario 2. This
means that the geographic distribution of enemy platforms
has a significant impact on combat effectiveness of Red war-
ship. Another important finding is that S2 is obviously better
than S1 in both two typical concrete scenarios.

5.6 Discussions of the case study

The aforementioned modeling process is also applicable
for other CoSES application development. The models are
suitable to be reused and composed in other simulation
applications, e.g., the warship model can be reused in
warship-anti-submarine effectiveness simulation. For each
CoSES application, application users select model compo-
nents from the library and compose them via the model
framework to construct a simulation application according
to the simulation purpose. If the modeling assumption and
constraints varies, only domain-specific models need to be
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revised and the model implementations are generated auto-
matically.

According to the description of Sects. 5.2-5.5, we can
observe that the proposed method supports domain-specific
modeling for typical CoSES domains and the models from
different domains are composed based on the platform
model. The domain-specific models are understandable to
domain users, and executable code is automatically gen-
erated from these models. Actually, in the model design
phase, the domain experts provide many useful suggestions
on how to build a logically appropriate model since they can
fully understand the semantics of the domain-specific model.
However, the code generator needs to be improved since the
modelers still need to add a few code manually to complete
the model implementation.

6 Conclusions and future work

To meet the composable modeling requirement and multi-
domain modeling requirement in effectiveness simulation,
this paper proposed a model framework-based domain-
specific modeling method. This method is based on the
comprehensive utilization of current research fruits, domain
knowledge and M&S experiences on CoSES. On the one
hand, this method provides DSMEs to model AVK for sub-
ject domains in CoSES; on the other hand, this method uses
AIK to construct a unified model framework to support the
composition of subsystems models across different domains.
Therefore, this method raises the modeling abstraction level,
supports generative modeling and composable modeling,
promotes model reuse and portability, and improves the
development efficiency. The case study proved the applicabil-
ity of the method. Although this method is proposed mainly to
address the modeling issues in CoSES, it can also be applica-
ble for the M&S of other complex systems.

The future work concentrates on the following aspects.
Firstly, we have only constructed DSM facilities for three
typical domains, thus DSM in other domains and how the
models in other domains are composed should be studied, for
example, the sensor domain and the countermeasure domain.
Secondly, if one formalism is used to support DSM in diverse
domains, then the formalism-based joint analysis of models
across domains can be performed to verify and validate these
models, e.g., state reachability analysis of a platform model,
its decision model and affiliate equipment models. Thirdly, to
promote the industrial application of the proposed approach,
many technical issues should be handled appropriately, such
as code generation efficiency (as discussed in Sect. 5.6), the
graphic appearance of the DSME. Finally, M&S research
on other kinds of complex systems (e.g., aeronautic systems,
traffic networks) can be studied to explore the universal appli-
cation of the proposed method.
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